Multivariate Time Series Forecasting (TSF) focuses on the prediction of future values based on historical context. In these problems, dependent variables provide additional information or early warning signs of changes in future behavior. State-of-the-art forecasting models rely on neural attention between timesteps. This allows for temporal learning but fails to consider distinct spatial relationships between variables. This paper addresses the problem by translating multivariate TSF into a novel spatiotemporal sequence formulation where each input token represents the value of a single variable at a given timestep. Long-Range Transformers can then learn interactions between space, time, and value information jointly along this extended sequence. Our method, which we call Spacetimeformer, scales to high dimensional forecasting problems dominated by Graph Neural Networks that rely on predefined variable graphs. We achieve competitive results on benchmarks from traffic forecasting to electricity demand and weather prediction while learning spatial and temporal relationships purely from data.


翻译:多变量时间序列预测(TSF) 侧重于根据历史背景预测未来值。 在这些问题中, 依赖变量可以提供未来行为变化的额外信息或早期警告信号。 最先进的预测模型依靠时间间隔之间的神经关注。 这样可以进行时间学习, 但无法考虑变量之间的不同空间关系。 本文将多变量 TSF 转换成一种新型的时空序列配方, 使每个输入符号代表特定时间步骤中单个变量的价值。 长频变异器可以在此扩展序列中学习空间、 时间 和 价值 信息 。 我们称之为Spacetimeex, 称Spacetimeex, 称其为高维的预测问题, 以预设的变量图形神经网络为主 。 我们在从交通预报到电力需求和天气预测的基准上取得了竞争性的结果, 同时学习纯来自数据的时空关系 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
20+阅读 · 2021年8月31日
专知会员服务
29+阅读 · 2021年7月30日
【WSDM2021】基于演化状态图的时间序列事件预测
专知会员服务
52+阅读 · 2020年12月1日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
110+阅读 · 2019年11月25日
已删除
将门创投
3+阅读 · 2019年6月12日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
基于 Keras 用深度学习预测时间序列
R语言中文社区
23+阅读 · 2018年7月27日
时间序列深度学习:状态 LSTM 模型预测太阳黑子(下)
R语言中文社区
9+阅读 · 2018年6月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Arxiv
0+阅读 · 2021年11月14日
Arxiv
35+阅读 · 2021年1月27日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
VIP会员
相关VIP内容
专知会员服务
20+阅读 · 2021年8月31日
专知会员服务
29+阅读 · 2021年7月30日
【WSDM2021】基于演化状态图的时间序列事件预测
专知会员服务
52+阅读 · 2020年12月1日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
110+阅读 · 2019年11月25日
相关资讯
已删除
将门创投
3+阅读 · 2019年6月12日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
基于 Keras 用深度学习预测时间序列
R语言中文社区
23+阅读 · 2018年7月27日
时间序列深度学习:状态 LSTM 模型预测太阳黑子(下)
R语言中文社区
9+阅读 · 2018年6月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Top
微信扫码咨询专知VIP会员