Multivariate Time Series Forecasting (TSF) focuses on the prediction of future values based on historical context. In these problems, dependent variables provide additional information or early warning signs of changes in future behavior. State-of-the-art forecasting models rely on neural attention between timesteps. This allows for temporal learning but fails to consider distinct spatial relationships between variables. This paper addresses the problem by translating multivariate TSF into a novel spatiotemporal sequence formulation where each input token represents the value of a single variable at a given timestep. Long-Range Transformers can then learn interactions between space, time, and value information jointly along this extended sequence. Our method, which we call Spacetimeformer, scales to high dimensional forecasting problems dominated by Graph Neural Networks that rely on predefined variable graphs. We achieve competitive results on benchmarks from traffic forecasting to electricity demand and weather prediction while learning spatial and temporal relationships purely from data.
翻译:多变量时间序列预测(TSF) 侧重于根据历史背景预测未来值。 在这些问题中, 依赖变量可以提供未来行为变化的额外信息或早期警告信号。 最先进的预测模型依靠时间间隔之间的神经关注。 这样可以进行时间学习, 但无法考虑变量之间的不同空间关系。 本文将多变量 TSF 转换成一种新型的时空序列配方, 使每个输入符号代表特定时间步骤中单个变量的价值。 长频变异器可以在此扩展序列中学习空间、 时间 和 价值 信息 。 我们称之为Spacetimeex, 称Spacetimeex, 称其为高维的预测问题, 以预设的变量图形神经网络为主 。 我们在从交通预报到电力需求和天气预测的基准上取得了竞争性的结果, 同时学习纯来自数据的时空关系 。