Fine-grained population maps are needed in several domains, like urban planning, environmental monitoring, public health, and humanitarian operations. Unfortunately, in many countries only aggregate census counts over large spatial units are collected, moreover, these are not always up-to-date. We present POMELO, a deep learning model that employs coarse census counts and open geodata to estimate fine-grained population maps with 100m ground sampling distance. Moreover, the model can also estimate population numbers when no census counts at all are available, by generalizing across countries. In a series of experiments for several countries in sub-Saharan Africa, the maps produced with POMELOare in good agreement with the most detailed available reference counts: disaggregation of coarse census counts reaches R2 values of 85-89%; unconstrained prediction in the absence of any counts reaches 48-69%.
翻译:在城市规划、环境监测、公共卫生和人道主义行动等若干领域都需要精确的人口图。 不幸的是,在许多国家,只收集了大型空间单位的人口普查总和,而且这些总和并不总是最新数据。 我们提出了POMOLO,这是一个采用粗略的人口普查计数和开放地理数据来估计精细人口图的深度学习模型,其地面取样距离为100米。此外,该模型还可以在完全没有人口普查计数的情况下,通过对所有国家进行归纳来估计人口数。在撒哈拉以南非洲一些国家的一系列实验中,与POMOOare共同制作的地图与最详细的参考计数一致:粗略普查计数的分类达到85-89%的R2值;在没有任何计数的情况下,无节制的预测达到48-69%。