Joint attention - the ability to purposefully coordinate attention with another agent, and mutually attend to the same thing -- is a critical component of human social cognition. In this paper, we ask whether joint attention can be useful as a mechanism for improving multi-agent coordination and social learning. We first develop deep reinforcement learning (RL) agents with a recurrent visual attention architecture. We then train agents to minimize the difference between the attention weights that they apply to the environment at each timestep, and the attention of other agents. Our results show that this joint attention incentive improves agents' ability to solve difficult coordination tasks, by reducing the exponential cost of exploring the joint multi-agent action space. Joint attention leads to higher performance than a competitive centralized critic baseline across multiple environments. Further, we show that joint attention enhances agents' ability to learn from experts present in their environment, even when completing hard exploration tasks that do not require coordination. Taken together, these findings suggest that joint attention may be a useful inductive bias for multi-agent learning.
翻译:共同关注 -- -- 与另一代理人有目的地协调关注和共同关注同一事物的能力 -- -- 是人类社会认知的一个关键组成部分。在本文件中,我们询问共同关注能否作为改善多代理人协调和社会学习的机制发挥作用。我们首先开发深度强化学习(RL)代理,并有一个经常性的视觉关注结构。然后我们培训代理,以最大限度地缩小它们在每一个时段对环境的注意分数与其他代理人的注意之间的差别。我们的结果表明,这种联合关注通过减少探索联合多代理人行动空间的指数成本,提高了代理人解决困难协调任务的能力。共同关注导致比竞争集中的批评者基线在多个环境中发挥更高的性能。此外,我们表明,共同关注提高了代理人向其环境中的专家学习的能力,即使完成不需要协调的艰苦探索任务时也是如此。这些调查结果表明,共同关注对于多代理人学习可能是一种有益的诱导偏。