In this paper, we present a framework rooted in control and planning that enables quadrupedal robots to traverse challenging terrains with discrete footholds using visual feedback. Navigating discrete terrain is challenging for quadrupeds because the motion of the robot can be aperiodic, highly dynamic, and blind for the hind legs of the robot. Additionally, the robot needs to reason over both the feasible footholds as well as robot velocity by speeding up and slowing down at different parts of the terrain. We build an offline library of periodic gaits which span two trotting steps on the robot, and switch between different motion primitives to achieve aperiodic motions of different step lengths on an A1 robot. The motion library is used to provide targets to a geometric model predictive controller which controls stance. To incorporate visual feedback, we use terrain mapping tools to build a local height map of the terrain around the robot using RGB and depth cameras, and extract feasible foothold locations around both the front and hind legs of the robot. Our experiments show a Unitree A1 robot navigating multiple unknown, challenging and discrete terrains in the real world.
翻译:在本文中,我们提出了一个植根于控制和规划的框架,使四重机器人能够利用视觉反馈,以离散的脚脚足跨过挑战性地形。导航离散的地形对四重体具有挑战性,因为机器人的运动对机器人的后腿具有周期性、高度动态和盲目性。此外,机器人需要通过加速和减缓地势的不同部分,来理解可行的脚足和机器人的速度。我们建立了一个定期的双向壁画库,它跨越机器人的两步步,在不同运动的原始体之间转换,以便在A1机器人上实现不同步长的周期运动。移动图书馆用来向一个控制姿态的几何模型预测控制器提供目标。为了纳入视觉反馈,我们使用地形绘图工具,用RGB和深度摄像头来绘制机器人周围的地形的局部高度图,并在机器人的前腿和后腿周围绘制可行的脚印位置。我们的实验显示一个A1机器人在真实世界上飞行的多处未知、挑战性和离散地形。