Panel-based, kernel-split quadrature is currently one of the most efficient methods available for accurate evaluation of singular and nearly singular layer potentials in two dimensions. However, it can fail completely for the layer potentials belonging to the modified Helmholtz, modified biharmonic and modified Stokes equations. These equations depend on a parameter, denoted $\alpha$, and kernel-split quadrature loses its accuracy rapidly when this parameter grows beyond a certain threshold. This paper describes an algorithm that remedies this problem, using per-target adaptive sampling of the source geometry. The refinement is carried out through recursive bisection, with a carefully selected rule set. This maintains accuracy for a wide range of the parameter $\alpha$, at an increased cost that scales as $\log \alpha$. Using this algorithm allows kernel-split quadrature to be both accurate and efficient for a much wider range of problems than previously possible.


翻译:以面板为基础的内核- 内核- 内核- 外形二次曲线目前是准确评估单层和近乎单一层在两个维度方面潜力的最有效方法之一。 但是,对于属于修改的赫尔默尔茨、修改的双调和经修改的斯托克斯方程式的层潜力,它可能完全失败。 这些方程式取决于一个参数, 以美元表示, 当该参数超过某一阈值时, 内核- 内核二次曲线会迅速失去其准确性 。 本文描述了一种算法, 利用源几何的每个目标的适应抽样来解决这个问题。 精细选择的规则, 精细的精细通过递两部分进行精细的改进。 这保持了参数 $\ 阿尔法$ 的准确性, 其成本的增加成本是 $\ log \ alpha$ 。 使用这种算法可以使内核- 螺旋二次曲线的二次曲线对于比以前可能要大得多的问题既准确又有效。

0
下载
关闭预览

相关内容

专知会员服务
23+阅读 · 2021年8月1日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
37+阅读 · 2020年11月24日
【WSDM2021】拓扑去噪的鲁棒图神经网络
专知会员服务
26+阅读 · 2020年11月14日
专知会员服务
60+阅读 · 2020年3月19日
已删除
将门创投
3+阅读 · 2020年8月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年9月30日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2020年8月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员