Communication is highly overloaded. Despite this, even young children are good at leveraging context to understand ambiguous signals. We propose a computational account of overloaded signaling from a shared agency perspective which we call the Imagined We for Communication. Under this framework, communication helps cooperators coordinate their perspectives, allowing them to act together to achieve shared goals. We assume agents are rational cooperators, which puts constraints on how signals can be sent and interpreted. We implement this model in a set of simulations demonstrating this model's success under increasing ambiguity as well as increasing layers of reasoning. Our model is capable of improving performance with deeper recursive reasoning; however, it outperforms comparison baselines at even the shallowest level, highlighting how shared knowledge and cooperative logic can do much of the heavy-lifting in language.


翻译:尽管如此,即使是幼儿也擅长利用环境来理解模糊的信号。我们建议从一个共同机构的角度来计算超载信号的计算账户,我们称之为“我们为沟通而想象” 。在这个框架下,通信帮助合作者协调其观点,使他们能够共同行动以实现共同目标。我们假设代理人是理性的合作者,这限制了信号的发送和解释。我们在一系列模拟中应用这一模型,以显示这一模型在日益模糊和越来越多的推理下所取得的成功。我们的模型能够用更深的递归推理来改进性能;然而,它甚至超越了最浅层次的对比基线,突出共享知识和合作逻辑如何在语言上产生巨大作用。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
23+阅读 · 2020年1月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年4月11日
VIP会员
相关VIP内容
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
23+阅读 · 2020年1月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员