We present online algorithms for directed spanners and directed Steiner forests. These problems fall under the unifying framework of online covering linear programming formulations, developed by Buchbinder and Naor (MOR, 34, 2009), based on primal-dual techniques. Our results include the following: For the pairwise spanner problem, in which the pairs of vertices to be spanned arrive online, we present an efficient randomized $\tilde{O}(n^{4/5})$-competitive algorithm for graphs with general lengths, where $n$ is the number of vertices of the given graph. For graphs with uniform lengths, we give an efficient randomized $\tilde{O}(n^{2/3+\epsilon})$-competitive algorithm, and an efficient deterministic $\tilde{O}(k^{1/2+\epsilon})$-competitive algorithm, where $k$ is the number of terminal pairs. These are the first online algorithms for directed spanners. For the directed Steiner forest problem with uniform costs, in which the pairs of vertices to be connected arrive online, we present an efficient randomized $\tilde{O}(n^{2/3 + \epsilon})$-competitive algorithm. The state-of-the-art online algorithm for general costs is due to Chakrabarty, Ene, Krishnaswamy, and Panigrahi (SICOMP 2018) and is $\tilde{O}(k^{1/2 + \epsilon})$-competitive. In the offline setting, the current best approximation ratio for pairwise spanners with uniform lengths and directed Steiner forests with uniform costs are both $\tilde{O}(n^{3/5 + \epsilon})$, due to Chlamtac, Dinitz, Kortsarz, and Laekhanukit (TALG 2020). We observe that a small modification of the online covering framework by Buchbinder and Naor implies a polynomial-time primal-dual approach with separation oracles, which a priori might perform exponentially many calls to the oracle. We convert the online spanner problem and the online Steiner forest problem into online covering problems and round in a problem-specific fashion.


翻译:我们为直接的球员和直接的施泰纳森林提供在线算法。 这些问题属于由Buchbinder和Naor(Mor, 34, 2009)根据原始技术开发的在线编程配方的统一框架。 我们的结果包括: 对于双对的球员问题, 即将穿透的螺旋成在线, 我们提出了一个高效的随机化的 $tilde{O} 和高竞争性的算法, 以普通的线性平面图为单位, 美元是给定的球的顶级算法。 对于具有统一长度的箭头, 我们给出一个高效的 美元- 平面平面图的图案, 我们给出了一个高效的 美元- 竞争性算法, 之前的Oraldicreal_ dalxaxal 和在线的 Ralvilal- dalxal_lal_lational_lational_lational_lational_lational-lational- disal- lax the laxial-nal laxial- laxial- laftal- lax) laxl- laxi- or- lax lax lax disl- lax disl- laxl- laxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年12月18日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
【Manning新书】现代Java实战,592页pdf
专知会员服务
100+阅读 · 2020年5月22日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
专知会员服务
61+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月29日
Robust subspace recovery by Tyler's M-estimator
Arxiv
0+阅读 · 2021年4月29日
Arxiv
0+阅读 · 2021年4月28日
Arxiv
0+阅读 · 2021年4月27日
VIP会员
相关资讯
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员