Movie Recommender System is widely applied in commercial environments such as NetFlix and Tubi. Classic recommender models utilize technologies such as collaborative filtering, learning to rank, matrix factorization and deep learning models to achieve lower marketing expenses and higher revenues. However, audience of movies have different ratings of the same movie in different contexts. Important movie watching contexts include audience mood, location, weather, etc. Tobe able to take advantage of contextual information is of great benefit to recommender builders. However, popular techniques such as tensor factorization consumes an impractical amount of storage, which greatly reduces its feasibility in real world environment. In this paper, we take advantage of the MatMat framework, which factorizes matrices by matrix fitting to build a context-aware movie recommender system that is superior to classic matrix factorization and comparable in the fairness metric.


翻译:电影建议系统在NetFlix和Tubi等商业环境中广泛应用。经典建议模型利用合作过滤、学习排名、矩阵系数化和深层次学习模型等技术来实现较低的营销开支和更高的收入。然而,电影观众在不同情况下对同一电影的评分不同。重要的电影观察环境包括观众的情绪、位置、天气等。能够利用背景信息对推荐人大有裨益。然而,推理等流行技术消耗了不切实际的存储量,大大降低了其在现实世界环境中的可行性。在本论文中,我们利用MatMat框架,通过配置矩阵将矩阵作为推算因素,以构建一种符合背景的电影建议系统,该系统优于典型的矩阵系数化和公平度指标的可比性。

1
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年6月15日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Top
微信扫码咨询专知VIP会员