The prosody of a spoken word is determined by its surrounding context. In incremental text-to-speech synthesis, where the synthesizer produces an output before it has access to the complete input, the full context is often unknown which can result in a loss of naturalness in the synthesized speech. In this paper, we investigate whether the use of predicted future text can attenuate this loss. We compare several test conditions of next future word: (a) unknown (zero-word), (b) language model predicted, (c) randomly predicted and (d) ground-truth. We measure the prosodic features (pitch, energy and duration) and find that predicted text provides significant improvements over a zero-word lookahead, but only slight gains over random-word lookahead. We confirm these results with a perceptive test.


翻译:口头单词的假写由周围环境决定。 在递增文本到语音合成中, 合成器在获得完整输入之前产生输出, 整个背景往往不为人所知, 这可能导致合成语音中的自然性丧失。 在本文中, 我们调查预测未来文本的使用是否能减轻这一损失。 我们比较了下一个未来单词的几种测试条件:(a) 未知(零字), (b) 语言模型预测, (c) 随机预测, (d) 地面真相。 我们测量了预想特征( pitch, 能量和持续时间), 发现预言文本在零字外观上提供了显著的改进, 但仅比随机字外观略有改善。 我们用感性测试来确认这些结果。

0
下载
关闭预览

相关内容

语音合成(Speech Synthesis),也称为文语转换(Text-to-Speech, TTS,它是将任意的输入文本转换成自然流畅的语音输出。语音合成涉及到人工智能、心理学、声学、语言学、数字信号处理、计算机科学等多个学科技术,是信息处理领域中的一项前沿技术。 随着计算机技术的不断提高,语音合成技术从早期的共振峰合成,逐步发展为波形拼接合成和统计参数语音合成,再发展到混合语音合成;合成语音的质量、自然度已经得到明显提高,基本能满足一些特定场合的应用需求。目前,语音合成技术在银行、医院等的信息播报系统、汽车导航系统、自动应答呼叫中心等都有广泛应用,取得了巨大的经济效益。 另外,随着智能手机、MP3、PDA 等与我们生活密切相关的媒介的大量涌现,语音合成的应用也在逐渐向娱乐、语音教学、康复治疗等领域深入。可以说语音合成正在影响着人们生活的方方面面。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
72+阅读 · 2020年5月5日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Arxiv
18+阅读 · 2020年10月9日
Arxiv
3+阅读 · 2018年11月13日
VIP会员
相关资讯
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Top
微信扫码咨询专知VIP会员