The research described in this paper concerns automatic cyberbullying detection in social media. There are two goals to achieve: building a gold standard cyberbullying detection dataset and measuring the performance of the Samurai cyberbullying detection system. The Formspring dataset provided in a Kaggle competition was re-annotated as a part of the research. The annotation procedure is described in detail and, unlike many other recent data annotation initiatives, does not use Mechanical Turk for finding people willing to perform the annotation. The new annotation compared to the old one seems to be more coherent since all tested cyberbullying detection system performed better on the former. The performance of the Samurai system is compared with 5 commercial systems and one well-known machine learning algorithm, used for classifying textual content, namely Fasttext. It turns out that Samurai scores the best in all measures (accuracy, precision and recall), while Fasttext is the second-best performing algorithm.
翻译:本文所描述的研究涉及社交媒体中的自动网络欺凌检测。 有两个目标需要实现: 建立一个金标准网络欺凌检测数据集, 并测量Samurai网络欺凌检测系统的性能。 Kaggle 竞赛所提供的形式化数据集作为研究的一部分被重新附加说明。 批注程序详细描述过, 与最近许多其他数据说明举措不同, 没有使用机械土耳其语来寻找愿意做批注的人。 与旧的相比, 新的批注似乎更加一致, 因为所有测试过的网络欺凌检测系统都对前者表现更好。 Samurai 系统的性能与5个商业系统和一个众所周知的机器学习算法相比, 用于对文本内容( 即快写) 进行分类。 它证明Samurai 在所有计量( 准确性、 准确性和回顾性) 中得分最佳, 而快写是第二好的算法 。