Propelled by versatile data capture, communication, and computing technologies, physical sensing has revolutionized the avenue for spontaneously capturing and interpreting real-world phenomenon. Despite its virtues, various limitations (e.g., high application specificity, partial autonomy, and sparse coverage) hinder physical sensing's effectiveness in critical scenarios such as disaster response. Meanwhile, social sensing is contriving as a pervasive sensing paradigm that leverages the observations from human participants equipped with portable devices and ubiquitous Internet connectivity (i.e., through social media or crowdsensing apps) to perceive the environment. While social sensing possesses a plethora of benefits, it also inherently suffers from a few drawbacks (e.g., inconsistent reliability, uncertain data provenance, and limited sensing availability). Motivated by the complementary virtues of both physical and social sensing, social-physical sensing (SPS) is protruding as an emerging sensing paradigm that tightly integrates social and physical sensors at an unprecedented scale. The vision of SPS centers on mitigating the individual weaknesses of physical and social sensing while exploiting their collective strengths in reconstructing the "state of the world", both physically and socially. While a good amount of interesting SPS applications has been explored, several important unsolved challenges and open research questions prevail in the way of developing dependable SPS systems, which require careful study to address. In this paper, we provide a comprehensive survey of SPS, with an emphasis on its definition and key enablers, state-of-the-art applications, potential research challenges, and road-map for future work. This paper intends to bridge the knowledge gap in current literature by thoroughly examining the various aspects of SPS crucial for building potent SPS systems.


翻译:物理感测被多用途数据采集、通信和计算技术所催化,使自发捕捉和解读现实世界现象的渠道发生了革命性的变化。尽管社会感测有许多好处,但各种限制(例如应用特性高、不可靠、数据出处不确定和感知可获性有限等)妨碍了物理感测在灾害应对等关键情景中的有效性。同时,社会感测作为一种普遍的感测模式,利用拥有便携式装置和无处不在的互联网连接(例如,通过社交媒体或人群感测应用程序)的人类参与者的观测,来感知环境。社会感测拥有大量好处,但社会感测本身也存在一些缺陷(例如,应用程度不一的可靠性、不可靠的数据源出和缺乏感知可及感知性)。 物理感测是一种正在形成的感测模式,它以前所未有的规模将社会和感应感应力感测器(即社会感应器)紧密结合。 社会感应力中心的观点是减轻物理和社会感测的弱点,同时利用其在重建“世界现状”方面的集体优势,也存在一些彻底的SSPSWS-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-P-P-P-P-P-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-P-

1
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
Arxiv
110+阅读 · 2020年2月5日
Generative Adversarial Networks: A Survey and Taxonomy
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
53+阅读 · 2018年12月11日
VIP会员
相关资讯
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
Arxiv
110+阅读 · 2020年2月5日
Generative Adversarial Networks: A Survey and Taxonomy
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
53+阅读 · 2018年12月11日
Top
微信扫码咨询专知VIP会员