Motivated by the proliferation of real-time applications in multimedia communication systems, tactile Internet, and cyber-physical systems, supporting delay-constrained traffic becomes critical for such systems. In delay-constrained traffic, each packet has a hard deadline; when it is not delivered before its deadline is up, it becomes useless and will be removed from the system. In this work, we focus on designing random access schemes for delay-constrained wireless communications. We first investigate three ALOHA-based schemes and prove that the system timely throughput of all three schemes under corresponding optimal transmission probabilities asymptotically converges to $1/e$, same as the well-known throughput limit for delay-unconstrained ALOHA systems. The fundamental reason why ALOHA-based schemes cannot achieve asymptotical system timely throughput beyond $1/e$ is that all active ALOHA stations access the channel with the same probability in any slot. To go beyond $1/e$, we propose a reinforcement-learning-based scheme for delay-constrained wireless communications, called RLRA-DC, under which different stations collaboratively attain different transmission probabilities by only interacting with the access point. Our numerical result shows that the system timely throughput of RLRA-DC can be as high as 0.8 for tens of stations and can still reach 0.6 even for thousands of stations, much larger than $1/e$.


翻译:由于多媒体通信系统、触动式互联网和网络物理系统中实时应用的激增,支持受延迟限制的通信系统成为这类系统的关键。在受延迟限制的通信中,每包都有一个困难的最后期限;在最后期限到期之前未交付时,每包就会变得无用,并将从系统中删除。在这项工作中,我们侧重于为受延迟限制的无线通信设计随机访问计划。我们首先调查三个基于ALOHA的计划,并证明该系统在相应的最佳传输概率下,所有三种计划都及时通过投入,其最佳传输概率必然达到1美元/美元。在延迟不受限制的ALOHA系统中,每包都有众所周知的截量限制。为什么ALOHA计划不能在最后期限到期前交付到时,它将失去效用,而将失去作用,因为所有活跃ALOHA的台站在任何时间段都有可能以同样的可能性进入频道。要超过1美元/e美元,我们提议一个基于强化学习的延迟受限制的无线通信计划,甚至称为RIRA-DC,在这个系统下,不同站通过高额的交付率,通过我们高额的系统能够通过高额交付。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月10日
Arxiv
93+阅读 · 2021年5月17日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员