This paper explores the use of hyperbolic geometry and deep learning techniques for recommendation. We present Hyperbolic Neural Collaborative Recommender (HNCR), a deep hyperbolic representation learning method that exploits mutual semantic relations among users/items for collaborative filtering (CF) tasks. HNCR contains two major phases: neighbor construction and recommendation framework. The first phase introduces a neighbor construction strategy to construct a semantic neighbor set for each user and item according to the user-item historical interaction. In the second phase, we develop a deep framework based on hyperbolic geometry to integrate constructed neighbor sets into recommendation. Via a series of extensive experiments, we show that HNCR outperforms its Euclidean counterpart and state-of-the-art baselines.
翻译:本文探讨使用双曲几何学和深深学习技术提出建议。 我们介绍了超曲神经协作建议(HNCR),这是一个深度的双曲代表学习方法,利用用户/项目之间的相互语义关系进行协作过滤(CF)任务。 HNCR包含两个主要阶段:邻居建设和建议框架。 第一阶段引入了邻居建设战略, 以根据用户- 项目历史互动为每个用户和项目构建一个语义邻居。 在第二阶段,我们开发了一个基于超曲地理测量的深度框架, 以整合构建的邻居。 通过一系列广泛的实验, 我们显示 HNCR超越了 Euclidean 对应和最先进的基线 。