Session-based recommendation (SBR) is a challenging task, which aims at recommending items based on anonymous behavior sequences. Almost all the existing solutions for SBR model user preference only based on the current session without exploiting the other sessions, which may contain both relevant and irrelevant item-transitions to the current session. This paper proposes a novel approach, called Global Context Enhanced Graph Neural Networks (GCE-GNN) to exploit item transitions over all sessions in a more subtle manner for better inferring the user preference of the current session. Specifically, GCE-GNN learns two levels of item embeddings from session graph and global graph, respectively: (i) Session graph, which is to learn the session-level item embedding by modeling pairwise item-transitions within the current session; and (ii) Global graph, which is to learn the global-level item embedding by modeling pairwise item-transitions over all sessions. In GCE-GNN, we propose a novel global-level item representation learning layer, which employs a session-aware attention mechanism to recursively incorporate the neighbors' embeddings of each node on the global graph. We also design a session-level item representation learning layer, which employs a GNN on the session graph to learn session-level item embeddings within the current session. Moreover, GCE-GNN aggregates the learnt item representations in the two levels with a soft attention mechanism. Experiments on three benchmark datasets demonstrate that GCE-GNN outperforms the state-of-the-art methods consistently.
翻译:基于届会的建议(SBR)是一项具有挑战性的任务,其目的在于根据匿名行为顺序推荐项目。几乎所有现有的SBR模式用户偏好解决方案都仅以本届会议为基础,而没有利用其他届会,其中可能包含相关和不相关的项目向本届会议过渡。本文件提出了一个新颖的方法,称为“全球环境强化图表神经网络(GCE-GNNN)”,以更微妙的方式利用所有届会的项目过渡,以更好地推断本届会议用户的偏好。具体地说,GCE-GNNN从届会图表和全球图表中分别学习两个层次的项目嵌入:(一)届会图,即学习届会一级的项目,通过本届会议的配对式项目过渡进行嵌入;以及(二)全球图,即学习全球层面的项目,通过模拟双向项目进行嵌入,以更好地推断本届会议的用户偏好用户偏好。在GCE-GNNNNN中,我们建议一个新的全球级项目代表学习层次。我们建议采用届会关注机制,在届会的软性图表中反复将当前水平项目嵌入GNF届会的演示。在届会的每个水平上学习GNBSL届会的一个水平上,在学习GSLALSLA的届会的演示。