The demand of probabilistic time series forecasting has been recently raised in various dynamic system scenarios, for example, system identification and prognostic and health management of machines. To this end, we combine the advances in both deep generative models and state space model (SSM) to come up with a novel, data-driven deep probabilistic sequence model. Specially, we follow the popular encoder-decoder generative structure to build the recurrent neural networks (RNN) assisted variational sequence model on an augmented recurrent input space, which could induce rich stochastic sequence dependency. Besides, in order to alleviate the issue of inconsistency between training and predicting as well as improving the mining of dynamic patterns, we (i) propose using a hybrid output as input at next time step, which brings training and predicting into alignment; and (ii) further devise a generalized auto-regressive strategy that encodes all the historical dependencies at current time step. Thereafter, we first investigate the methodological characteristics of the proposed deep probabilistic sequence model on toy cases, and then comprehensively demonstrate the superiority of our model against existing deep probabilistic SSM models through extensive numerical experiments on eight system identification benchmarks from various dynamic systems. Finally, we apply our sequence model to a real-world centrifugal compressor sensor data forecasting problem, and again verify its outstanding performance by quantifying the time series predictive distribution.
翻译:最近,在各种动态系统情景中提出了预测概率时间序列的要求,例如系统识别以及机器预测和健康管理,为此,我们将深基因模型和国家空间模型的进展结合起来,提出一个新的、由数据驱动的深度概率序列模型。特别是,我们采用流行的编码器脱钩基因结构,以建立经常神经网络(RNN)的辅助变异序列模型,以扩大经常性输入空间,从而产生丰富的随机序列依赖性。此外,为了减轻培训与预测之间的不一致问题,并改善动态模式的开采,我们提议在下一个步骤使用混合产出作为投入,使培训和预测达到一致性;以及(二)进一步制定普遍的自动反向战略,在目前步骤中将所有历史依赖性神经网络(RNN)相连接起来。之后,我们首先研究拟议中的深度稳定序列序列模型的方法特点,在玩具案件中产生丰富的随机序列依赖性。此外,为了减轻培训与预测以及改进动态模式的开发,我们提议在下一个步骤时使用混合产出作为投入,从而实现培训和预测的一致;以及(二)进一步设计一个通用的自动递校准性预测模型,然后通过我们现有的甚低的精确的系统,通过精确的精确的预测模型,用我们最后的精确的系统,将SMA点的精确的精确的精确的预测模型,然后用我们的精确的模型,再用我们的精确的精确的精确的精确的模型的模型,通过我们的精确的精确的模型的模型,用。