In this paper, we present a method aimed at integrating domain knowledge abstracted as logic rules into the predictive behaviour of a neural network using feature extracting functions for visual sentiment analysis. We combine the declarative first-order logic rules which represent the human knowledge in a logically-structured format making use of feature-extracting functions. These functions are embodied as programming functions which can represent, in a straightforward manner, the applicable domain knowledge as a set of logical instructions and provide a cumulative set of probability distributions of the input data. These distributions can then be used during the training process in a mini-batch strategy. In contrast with other neural logic approaches, the programmatic nature in practice of these functions do not require any kind of special mathematical encoding, which makes our method very general in nature. We also illustrate the utility of our method for sentiment analysis and compare our results to those obtained using a number of alternatives elsewhere in the literature.
翻译:在本文中,我们提出一种方法,旨在利用视觉感知分析的特征提取功能,将作为逻辑规则抽取的域知识纳入神经网络的预测行为;我们结合了宣示性第一阶逻辑规则,这些逻辑规则以逻辑结构化格式代表人类的知识,利用特性提取功能;这些功能体现为编程功能,可以直接代表可应用的域知识,作为一套逻辑指示,并提供输入数据的累积概率分布集。这些分布可在培训过程中用于小型的策略;与其他神经逻辑方法不同,这些功能的实际操作性不需要任何特殊的数学编码,这使得我们的方法性质非常笼统;我们还说明了我们用于情绪分析的方法的效用,并将我们的结果与文献中其他地方使用的一些替代方法取得的结果进行比较。