In this study, we introduce a novel, probabilistic viewpoint on adversarial examples, achieved through box-constrained Langevin Monte Carlo (LMC). Proceeding from this perspective, we develop an innovative approach for generating semantics-aware adversarial examples in a principled manner. This methodology transcends the restriction imposed by geometric distance, instead opting for semantic constraints. Our approach empowers individuals to incorporate their personal comprehension of semantics into the model. Through human evaluation, we validate that our semantics-aware adversarial examples maintain their inherent meaning. Experimental findings on the MNIST and SVHN datasets demonstrate that our semantics-aware adversarial examples can effectively circumvent robust adversarial training methods tailored for traditional adversarial attacks.
翻译:暂无翻译