Most commercially available fixed-wing aerial vehicles (FWV) can carry only small, lightweight computing hardware such as Jetson TX2 onboard. Solving non-linear trajectory optimization on these computing resources is computationally challenging even while considering only the kinematic motion model. Most importantly, the computation time increases sharply as the environment becomes more cluttered. In this paper, we take a step towards overcoming this bottleneck and propose a trajectory optimizer that achieves online performance on both conventional laptops/desktops and Jetson TX2 in a typical urban environment setting. Our optimizer builds on the novel insight that the seemingly non-linear trajectory optimization problem for FWV has an implicit multi-convex structure. Our optimizer exploits these computational structures by bringing together diverse concepts from Alternating Minimization, Bregman iteration, and Alternating Direction Method of Multipliers. We show that our optimizer outperforms the state-of-the-art implementation of sequential quadratic programming approach in optimal control solver ACADO in computation time and solution quality measured in terms of control and goal reaching cost.
翻译:商业上大多数可用的固定翼飞行器(FWV)只能携带小型、轻量级的计算机硬件,如船上的杰特森 TX2。 解决这些计算资源的非线性轨道优化在计算上具有挑战性, 即使只考虑运动模型。 最重要的是, 当环境变得更加混乱时, 计算时间会急剧增加。 在本文件中, 我们迈出一步, 克服这个瓶颈, 并提议一个轨迹优化器, 在典型的城市环境中, 在常规膝上型膝上型/台式和杰特森 TX2 上都实现在线性能。 我们的优化器基于一种新颖的洞察觉, 即FWV看似非线性轨道优化问题有一个隐含的多电离体结构。 我们的优化器利用这些计算结构, 将调控、 调控、 调控、 调控、 调代向方向方法等不同概念结合起来。 我们显示, 我们的优化器在最佳控制软件 ACADO 计算时间和解决方案的质量以达到成本。