In this paper we derive a PAC-Bayesian error bound for autonomous stochastic LTI state-space models. The motivation for deriving such error bounds is that they will allow deriving similar error bounds for more general dynamical systems, including recurrent neural networks. In turn, PACBayesian error bounds are known to be useful for analyzing machine learning algorithms and for deriving new ones.
翻译:在本文中,我们得出了一个PAC-Bayesian错误,该错误将连接到自动随机的 LTI 状态空间模型中。 得出这种错误界限的动机是允许为更普遍的动态系统(包括经常性神经网络)得出类似的错误界限。 反过来,PAC-Bayesian错误界限对于分析机器学习算法和产生新的算法是有用的。