This paper investigates preconditioned conjugate gradient techniques for solving kernel ridge regression (KRR) problems with a medium to large number of data points ($10^4 \leq N \leq 10^7$), and it describes two methods with the strongest guarantees available. The first method, RPCholesky preconditioning, accurately solves the full-data KRR problem in $O(N^2)$ arithmetic operations, assuming sufficiently rapid polynomial decay of the kernel matrix eigenvalues. The second method, KRILL preconditioning, offers an accurate solution to a restricted version of the KRR problem involving $k \ll N$ selected data centers at a cost of $O((N + k^2) k \log k)$ operations. The proposed methods efficiently solve a range of KRR problems, making them well-suited for practical applications.
翻译:本文研究了用于求解中等至大规模数据点($10^4 \leq N \leq 10^7$)核岭回归问题的预处理共轭梯度技术,并介绍了两种具有最强理论保证的方法。第一种方法,RPCholesky预处理,在假设核矩阵特征值具有足够快的多项式衰减的前提下,能以$O(N^2)$次算术运算精确求解全数据KRR问题。第二种方法,KRILL预处理,能以$O((N + k^2) k \log k)$次运算的代价,精确求解一个涉及$k \ll N$个选定数据中心的受限版本KRR问题。所提出的方法能高效求解一系列KRR问题,使其非常适合于实际应用。