The traffic video data has become a critical factor in confining the state of traffic congestion due to the recent advancements in computer vision. This work proposes a unique technique for traffic video classification using a color-coding scheme before training the traffic data in a Deep convolutional neural network. At first, the video data is transformed into an imagery data set; then, the vehicle detection is performed using the You Only Look Once algorithm. A color-coded scheme has been adopted to transform the imagery dataset into a binary image dataset. These binary images are fed to a Deep Convolutional Neural Network. Using the UCSD dataset, we have obtained a classification accuracy of 98.2%.
翻译:交通视频数据已成为限制交通堵塞状态的一个关键因素,因为最近计算机视觉的进步。 这项工作提出了一种独特的交通视频分类技术, 在深层神经网络培训交通数据之前先使用颜色编码方案进行交通视频分类。 首先, 视频数据转换成图像数据集; 然后, 车辆检测使用“ 你一看一看一看”算法进行 。 采用了一种颜色编码办法将图像数据集转换成二进制图像数据集。 这些二进制图像被输入深层革命神经网络。 使用UCSD数据集, 我们获得了98.2%的分类准确性 。