We investigate the Helmholtz equation with suitable boundary conditions and uncertainties in the wavenumber. Thus the wavenumber is modeled as a random variable or a random field. We discretize the Helmholtz equation using finite differences in space, which leads to a linear system of algebraic equations including random variables. A stochastic Galerkin method yields a deterministic linear system of algebraic equations. This linear system is high-dimensional, sparse and complex symmetric but, in general, not hermitian. We therefore solve this system iteratively with GMRES and propose two preconditioners: a complex shifted Laplace preconditioner and a mean value preconditioner. Both preconditioners reduce the number of iteration steps as well as the computation time in our numerical experiments.
翻译:我们用合适的边界条件和波数中的不确定因素来调查赫尔莫霍茨方程式。 因此波数是随机变量或随机字段的模型。 我们使用空间的有限差异将赫尔莫赫茨方程式分解, 从而形成包括随机变量在内的代数方程式线性系统。 随机加热金法产生一个代数方程式的确定性线性系统。 这个线性系统是高维、稀疏和复杂的对称系统, 但一般而言,不是隐形的。 因此, 我们用 GMRES 反复解决这个系统, 并提议两个先决条件: 一个复杂的变换 Laplace 先决条件器和一个平均值前置装置。 两个先决条件都减少了我们数字实验中的迭代步骤和计算时间。