Detection of a planted dense subgraph in a random graph is a fundamental statistical and computational problem that has been extensively studied in recent years. We study a hypergraph version of the problem. Let $G^r(n,p)$ denote the $r$-uniform Erd\H{o}s-R\'enyi hypergraph model with $n$ vertices and edge density $p$. We consider detecting the presence of a planted $G^r(n^\gamma, n^{-\alpha})$ subhypergraph in a $G^r(n, n^{-\beta})$ hypergraph, where $0< \alpha < \beta < r-1$ and $0 < \gamma < 1$. Focusing on tests that are degree-$n^{o(1)}$ polynomials of the entries of the adjacency tensor, we determine the threshold between the easy and hard regimes for the detection problem. More precisely, for $0 < \gamma < 1/2$, the threshold is given by $\alpha = \beta \gamma$, and for $1/2 \le \gamma < 1$, the threshold is given by $\alpha = \beta/2 + r(\gamma - 1/2)$. Our results are already new in the graph case $r=2$, as we consider the subtle log-density regime where hardness based on average-case reductions is not known. Our proof of low-degree hardness is based on a conditional variant of the standard low-degree likelihood calculation.


翻译:---- 在最近几年中,检测随机图中存在种植密集子图是一个基本的统计和计算问题,已经得到了广泛的研究。我们研究了问题的超图版本。令$G^r(n,p)$表示带有$n$个顶点和边密度$p$的$r$-uniform Erdős-Renyi超图模型。我们考虑在一个$G^r(n,n^{-\beta})$超图中检测是否存在种植的$G^r(n^\gamma,n^{-\alpha})$子超图,其中$0<\alpha<\beta<r-1$且$0<\gamma<1$。我们关注的是对于超图邻接张量条目的$n^{o(1)}$次多项式的检验,我们确定了检测问题的易于和困难阈值。更确切地说,当$0<\gamma<1/2$时,阈值由$\alpha=\beta\gamma$给出,当$1/2\leq\gamma<1$时,阈值由$\alpha=\beta/2+r(\gamma-1/2)$给出。我们的结果在$r=2$的情况下已经是新的,因为我们考虑了平均情况约化不知道困难性的细致对数密度区间。我们证明了低次难度的基础是标准低次似然计算的条件变体。

0
下载
关闭预览

相关内容

【NeurIPS2020-MIT】子图神经网络,Subgraph Neural Networks
专知会员服务
45+阅读 · 2020年9月28日
【NeurIPS2020】点针图网络,Pointer Graph Networks
专知会员服务
39+阅读 · 2020年9月27日
专知会员服务
61+阅读 · 2020年3月4日
【康奈尔大学】度量数据粒度,Measuring Dataset Granularity
专知会员服务
12+阅读 · 2019年12月27日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【论文笔记】Graph U-Nets
专知
80+阅读 · 2019年11月25日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月30日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员