Vision Transformers (ViTs) have a radically different architecture with significantly less inductive bias than Convolutional Neural Networks. Along with the improvement in performance, security and robustness of ViTs are also of great importance to study. In contrast to many recent works that exploit the robustness of ViTs against adversarial examples, this paper investigates a representative causative attack, i.e., backdoor. We first examine the vulnerability of ViTs against various backdoor attacks and find that ViTs are also quite vulnerable to existing attacks. However, we observe that the clean-data accuracy and backdoor attack success rate of ViTs respond distinctively to patch transformations before the positional encoding. Then, based on this finding, we propose an effective method for ViTs to defend both patch-based and blending-based trigger backdoor attacks via patch processing. The performances are evaluated on several benchmark datasets, including CIFAR10, GTSRB, and TinyImageNet, which show the proposed novel defense is very successful in mitigating backdoor attacks for ViTs. To the best of our knowledge, this paper presents the first defensive strategy that utilizes a unique characteristic of ViTs against backdoor attacks. The paper will appear in the Proceedings of the AAAI'23 Conference. This work was initially submitted in November 2021 to CVPR'22, then it was re-submitted to ECCV'22. The paper was made public in June 2022. The authors sincerely thank all the referees from the Program Committees of CVPR'22, ECCV'22, and AAAI'23.


翻译:视觉变异器(ViTs)有着完全不同的结构,其感知偏差远比进化神经网络要小得多。随着ViTs的性能改善,安全和稳健性也非常重要。与最近利用ViTs的强力对抗对抗对抗性辩论的例子的许多工作相比,本文调查了具有代表性的诱因攻击,即后门。我们首先检查ViTs对各种后门攻击的脆弱性,发现ViTs也很容易受到现有攻击。然而,我们发现ViTs的清洁数据准确性和后门攻击成功率明显地反应了定位编码之前的补差变。随后,我们根据这一发现,我们为ViTs 提供了一种有效的方法来保护补丁基和混合的后门攻击。我们首先在几个基准数据集(包括CIFAR10、GTSRB和TinyImageNet)上评价了表现的性能。我们提出的新防御性防御性防御性防御性防御性防御性程序在VTs 20年6月提交ERC的论文中首次使用。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
279+阅读 · 2020年11月26日
专知会员服务
123+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
深度学习医学图像分析文献集
机器学习研究会
17+阅读 · 2017年10月13日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
19+阅读 · 2020年12月23日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
14+阅读 · 2020年10月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
深度学习医学图像分析文献集
机器学习研究会
17+阅读 · 2017年10月13日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员