We propose a new approach for generating SPARQL queries on RDF knowledge graphs from natural language questions or keyword queries, using a large language model. Our approach does not require fine-tuning. Instead, it uses the language model to explore the knowledge graph by strategically executing SPARQL queries and searching for relevant IRIs and literals. We evaluate our approach on a variety of benchmarks (for knowledge graphs of different kinds and sizes) and language models (of different scales and types, commercial as well as open-source) and compare it with existing approaches. On Wikidata we reach state-of-the-art results on multiple benchmarks, despite the zero-shot setting. On Freebase we come close to the best few-shot methods. On other, less commonly evaluated knowledge graphs and benchmarks our approach also performs well overall. We conduct several additional studies, like comparing different ways of searching the graphs, incorporating a feedback mechanism, or making use of few-shot examples.


翻译:我们提出了一种基于大型语言模型、从自然语言问题或关键词查询生成RDF知识图谱上SPARQL查询的新方法。该方法无需微调,而是利用语言模型通过策略性执行SPARQL查询并搜索相关IRI和字面值来探索知识图谱。我们在多种基准测试(涵盖不同类型和规模的知识图谱)和语言模型(不同规模与类型的商业及开源模型)上评估该方法,并与现有方法进行比较。在Wikidata上,我们在多个基准测试中取得了零样本设置下的最优结果;在Freebase上,我们的方法接近最佳少样本方法的性能;在其他较少被评估的知识图谱和基准测试中,该方法整体表现良好。我们还进行了多项附加研究,包括比较不同的图谱搜索方式、引入反馈机制以及利用少样本示例等。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2022年1月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员