The COVID-19 (Coronavirus disease 2019) pandemic has become a major global threat to human health and well-being. Thus, the development of computer-aided detection (CAD) systems that are capable to accurately distinguish COVID-19 from other diseases using chest computed tomography (CT) and X-ray data is of immediate priority. Such automatic systems are usually based on traditional machine learning or deep learning methods. Differently from most of existing studies, which used either CT scan or X-ray images in COVID-19-case classification, we present a simple but efficient deep learning feature fusion model, called UncertaintyFuseNet, which is able to classify accurately large datasets of both of these types of images. We argue that the uncertainty of the model's predictions should be taken into account in the learning process, even though most of existing studies have overlooked it. We quantify the prediction uncertainty in our feature fusion model using effective Ensemble MC Dropout (EMCD) technique. A comprehensive simulation study has been conducted to compare the results of our new model to the existing approaches, evaluating the performance of competing models in terms of Precision, Recall, F-Measure, Accuracy and ROC curves. The obtained results prove the efficiency of our model which provided the prediction accuracy of 99.08\% and 96.35\% for the considered CT scan and X-ray datasets, respectively. Moreover, our UncertaintyFuseNet model was generally robust to noise and performed well with previously unseen data. The source code of our implementation is freely available at: https://github.com/moloud1987/UncertaintyFuseNet-for-COVID-19-Classification.


翻译:COVID-19(Corona病毒病 2019年)大流行已成为对人类健康和福祉的重大全球威胁,因此,开发计算机辅助检测系统(CAD)是当前的优先事项,该系统能够精确地将COVID-19与其他疾病区别开来,使用胸部计算断层成像(CT)和X射线数据。这种自动系统通常基于传统的机器学习或深层学习方法。与大多数现有研究不同,这些研究在COVID-19案例分类中使用CT扫描或X射线图像,我们展示了一种简单而高效的深层次学习特征聚合模型,称为 " 不确定性FuseNet ",它能够精确地对这两种类型的图像的大型数据集进行分类。我们认为,在学习过程中,即使大多数现有研究都忽视了模型的不确定性或深层学习方法。我们用有效的Ensmlasble MC 丢弃(EMCD) 技术来量化了我们特征混合模型的预测不确定性。我们进行了全面的模拟研究,将我们的新模型的结果与现有方法进行了比较,评估了我们目前对精确性模型的准确性模型的准确性,并且提供了我们的精确性数据。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
60+阅读 · 2020年3月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
30+阅读 · 2021年7月7日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员