Defect prediction has been a popular research topic where machine learning (ML) and deep learning (DL) have found numerous applications. However, these ML/DL-based defect prediction models are often limited by the quality and size of their datasets. In this paper, we present Defectors, a large dataset for just-in-time and line-level defect prediction. Defectors consists of $\approx$ 213K source code files ($\approx$ 93K defective and $\approx$ 120K defect-free) that span across 24 popular Python projects. These projects come from 18 different domains, including machine learning, automation, and internet-of-things. Such a scale and diversity make Defectors a suitable dataset for training ML/DL models, especially transformer models that require large and diverse datasets. We also foresee several application areas of our dataset including defect prediction and defect explanation. Dataset link: https://doi.org/10.5281/zenodo.7708984


翻译:机学(ML)和深层学习(DL)已发现许多应用,但基于ML/DL的缺陷预测模型往往因其数据集的质量和规模而受到限制。本文介绍的是一个广受欢迎的研究课题,其中机器学习(ML)和深层学习(DL)发现许多应用,但这些基于ML/DL的缺陷预测模型往往因其数据集的质量和规模而受到限制。本文介绍的是Deffectors,这是用于及时预测和直线一级缺陷预测的大型数据集。Dutectors由$approx$213K源代码文件组成($approx$93K缺陷和$\approx$120K无缺陷解释),覆盖了24个广受欢迎的Python项目。这些项目来自18个不同领域,包括机器学习、自动化和互联网。这种规模和多样性使Deffectors成为培训ML/DL模型的合适数据集,特别是需要大型和多样化数据集的变压器模型。我们还预见了我们数据集的若干应用领域,包括缺陷预测和解释。数据设置链接:https://doi.org/10.5281/770808/zenododo 78784。</s>

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
30+阅读 · 2021年8月18日
Arxiv
11+阅读 · 2021年3月25日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员