Many of the music generation systems based on neural networks are fully autonomous and do not offer control over the generation process. In this research, we present a controllable music generation system in terms of tonal tension. We incorporate two tonal tension measures based on the Spiral Array Tension theory into a variational autoencoder model. This allows us to control the direction of the tonal tension throughout the generated piece, as well as the overall level of tonal tension. Given a seed musical fragment, stemming from either the user input or from directly sampling from the latent space, the model can generate variations of this original seed fragment with altered tonal tension. This altered music still resembles the seed music rhythmically, but the pitch of the notes are changed to match the desired tonal tension as conditioned by the user.
翻译:以神经网络为基础的许多音乐生成系统完全自主,无法控制生成过程。 在这项研究中, 我们展示了一种可控的音效生成系统, 以音调张力为单位。 我们把基于螺旋阵列紧张理论的两个内线紧张度措施纳入一个可变自动编码模型。 这使我们能够控制生成的片段内线紧张度的方向, 以及整个内线紧张度的总体水平。 由于来自用户输入或来自潜在空间的直接取样的种子音乐碎片, 该模型可以产生这个原始种子碎片的变异, 并改变线性紧张度。 这种变异的音乐仍然像种子音乐的节奏, 但是音调的音调却被改变, 以适应用户所要求的音调紧张度。