Rossman [In \emph{Proc.\ $34$th Comput.\ Complexity Conf.}, 2019] introduced the notion of \emph{criticality}. The criticality of a Boolean function $f \colon \zo^n \to \zo$ is the minimum $\lambda \geq 1$ such that for all positive integers $t$, \[ \Pr_{\brho \sim \calR_p}\left[\DT_{\depth}(f|_{\brho}) \geq t\right] \leq (p\lambda)^t. \] \hastad's celebrated switching lemma shows that the criticality of any $k$-DNF is at most $O(k)$. Subsequent improvements to correlation bounds of $\AC^0$-circuits against parity showed that the criticality of any $\AC^0$-\emph{circuit} of size $S$ and depth $d+1$ is at most $O(\log S)^d$ and any \emph{regular} $\AC^0$-\emph{formula} of size $S$ and depth $d+1$ is at most $O(\frac1d \cdot \log S)^d$. We strengthen these results by showing that the criticality of \emph{any} $\AC^0$-formula (not necessarily regular) of size $S$ and depth $d+1$ is at most $O(\frac{\log S}{d})^d$, resolving a conjecture due to Rossman. This result also implies Rossman's optimal lower bound on the size of any depth-$d$ $\AC^0$-formula computing parity [Comput.\ Complexity, 27(2):209--223, 2018.]. Our result implies tight correlation bounds against parity, tight Fourier concentration results and improved \#SAT algorithm for $\AC^0$-formulae.
翻译:罗斯曼 [在\ emph{ Proc.\ 34$thcomputurt.\ complication.}, 2019] 引入了 emph{ 关键度概念。 布尔函数的临界度 $f\ cron \ zo ⁇ n\ to\ zo$ 是最小的 $\ lambda\ geq 1美元, 对所有正整数美元来说,\\\ Pr ⁇ brho\ cal_ p ⁇ left[\ dr2] (f ⁇ brho}) geq t\ right]\ 美元美元 美元 美元 美元 美元 。 美元 美元 美元 美元 美元 的美元 美元 美元 美元 美元 深度 (plex_ lax) (plex= 美元 美元 美元 。