Graph Networks (GNs) enable the fusion of prior knowledge and relational reasoning with flexible function approximations. In this work, a general GN-based model is proposed which takes full advantage of the relational modeling capabilities of GNs and extends these to probabilistic modeling with Variational Bayes (VB). To that end, we combine complementary pre-existing approaches on VB for graph data and propose an approach that relies on graph-structured latent and conditioning variables. It is demonstrated that Neural Processes can also be viewed through the lens of the proposed model. We show applications on the problem of structured probability density modeling for simulated and real wind farm monitoring data, as well as on the meta-learning of simulated Gaussian Process data. We release the source code, along with the simulated datasets.


翻译:图表网络(GNs)能够将先前的知识和关联推理与灵活的功能近似相融合。在这项工作中,提出了一个基于GN的一般模型,充分利用GNs的关系模型能力,并将这些模型推广到与变异性海湾(VB)的概率模型。为此,我们结合了VB在图形数据方面的补充性现有方法,并提出了一个依靠图形结构的潜伏和调节变量的方法。证明神经过程也可以通过拟议模型的透镜来查看。我们展示了模拟和实际风力农场监测数据结构性概率模型问题的应用,以及模拟高斯过程数据的元学习。我们发布了源代码以及模拟数据集。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年12月18日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
182+阅读 · 2020年4月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 2
CreateAMind
6+阅读 · 2018年9月9日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Query Embedding on Hyper-relational Knowledge Graphs
Arxiv
4+阅读 · 2021年6月17日
Arxiv
21+阅读 · 2019年8月21日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 2
CreateAMind
6+阅读 · 2018年9月9日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员