Interactive 3D scenes are increasingly vital for embodied intelligence, yet existing datasets remain limited due to the labor-intensive process of annotating part segmentation, kinematic types, and motion trajectories. We present REACT3D, a scalable zero-shot framework that converts static 3D scenes into simulation-ready interactive replicas with consistent geometry, enabling direct use in diverse downstream tasks. Our contributions include: (i) openable-object detection and segmentation to extract candidate movable parts from static scenes, (ii) articulation estimation that infers joint types and motion parameters, (iii) hidden-geometry completion followed by interactive object assembly, and (iv) interactive scene integration in widely supported formats to ensure compatibility with standard simulation platforms. We achieve state-of-the-art performance on detection/segmentation and articulation metrics across diverse indoor scenes, demonstrating the effectiveness of our framework and providing a practical foundation for scalable interactive scene generation, thereby lowering the barrier to large-scale research on articulated scene understanding. Our project page is \textit{\hypersetup{urlcolor=black}\href{https://react3d.github.io/}{react3d.github.io}}.
翻译:交互式三维场景对于具身智能日益重要,然而由于部件分割、运动学类型和运动轨迹标注过程劳动密集,现有数据集仍然有限。我们提出了REACT3D,一个可扩展的零样本框架,能够将静态三维场景转换为具备一致几何结构的、可直接用于多种下游任务的、仿真就绪的交互式副本。我们的贡献包括:(i) 可开启物体检测与分割,用于从静态场景中提取候选可动部件;(ii) 关节估计,用于推断关节类型和运动参数;(iii) 隐藏几何补全及随后的交互式物体装配;(iv) 以广泛支持的格式进行交互式场景集成,确保与标准仿真平台的兼容性。我们在多样化的室内场景上,在检测/分割和关节度量方面实现了最先进的性能,证明了我们框架的有效性,并为可扩展的交互式场景生成提供了实用基础,从而降低了大规模关节化场景理解研究的门槛。我们的项目页面是 \textit{\hypersetup{urlcolor=black}\href{https://react3d.github.io/}{react3d.github.io}}。