There is considerable evidence that deep neural networks are vulnerable to adversarial perturbations applied directly to their digital inputs. However, it remains an open question whether this translates to vulnerabilities in real systems. For example, an attack on self-driving cars would in practice entail modifying the driving environment, which then impacts the video inputs to the car's controller, thereby indirectly leading to incorrect driving decisions. Such attacks require accounting for system dynamics and tracking viewpoint changes. We propose a scalable approach for finding adversarial modifications of a simulated autonomous driving environment using a differentiable approximation for the mapping from environmental modifications (rectangles on the road) to the corresponding video inputs to the controller neural network. Given the parameters of the rectangles, our proposed differentiable mapping composites them onto pre-recorded video streams of the original environment, accounting for geometric and color variations. Moreover, we propose a multiple trajectory sampling approach that enables our attacks to be robust to a car's self-correcting behavior. When combined with a neural network-based controller, our approach allows the design of adversarial modifications through end-to-end gradient-based optimization. Using the Carla autonomous driving simulator, we show that our approach is significantly more scalable and far more effective at identifying autonomous vehicle vulnerabilities in simulation experiments than a state-of-the-art approach based on Bayesian Optimization.
翻译:大量证据表明,深神经网络很容易受到直接适用于其数字投入的对称扰动。然而,这仍然是一个尚未解决的问题,即这是否转化成实际系统中的弱点。例如,对自驾驶汽车的袭击实际上意味着改变驾驶环境,从而影响汽车控制器的视频输入,从而间接导致驾驶决定不正确的决定。这种袭击需要系统动态和跟踪观点变化的核算。我们提出了一个可扩缩的方法,用以寻找模拟自主驾驶环境的对称修改,使用一种可变近似的方法从环境改变(公路上的矩形)到对控制器神经网络的相应视频输入。根据矩形参数,我们提议的可不同绘图将它们合成成原始环境的预先录制的视频流,考虑到几何度和颜色的变化变化。此外,我们提出一个多轨迹抽样方法,使我们的攻击能够对汽车的自我纠正行为产生强大的力度。当与以神经网络为基础的控制器相结合时,我们的方法允许设计从最终到终端的对等式神经网络的图像输入到相应的控制器神经网络网络网络网络的对应的图像输入。鉴于矩形的矩形,我们提议的可变动性绘图式的模型比远的机动化实验更能性更能化的模型,在更精确的飞行器上显示我们自主的自我模拟状态上展示了我们自主的自动的模拟的自我定位,在更精确的机动化的模拟的模拟的模拟状态上展示了一种较强的模拟。