It is known that the curvature of the feasible set in convex optimization allows for algorithms with better convergence rates, and there has been renewed interest in this topic both for offline as well as online problems. In this paper, leveraging results on geometry and convex analysis, we further our understanding of the role of curvature in optimization: - We first show the equivalence of two notions of curvature, namely strong convexity and gauge bodies, proving a conjecture of Abernethy et al. As a consequence, this show that the Frank-Wolfe-type method of Wang and Abernethy has accelerated convergence rate $O(\frac{1}{t^2})$ over strongly convex feasible sets without additional assumptions on the (convex) objective function. - In Online Linear Optimization, we identify two main properties that help explaining \emph{why/when} Follow the Leader (FTL) has only logarithmic regret over strongly convex sets. This allows one to directly recover a recent result of Huang et al., and to show that FTL has logarithmic regret over strongly convex sets whenever the gain vectors are non-negative. - We provide an efficient procedure for approximating convex bodies by strongly convex ones while smoothly trading off approximation error and curvature. This allows one to extend the improved algorithms over strongly convex sets to general convex sets. As a concrete application, we extend the results of Dekel et al. on Online Linear Optimization with Hints to general convex sets.
翻译:众所周知, convex 优化中可行的设置的曲率可以让算法具有更好的趋同率, 并且对这个话题的离线和在线问题都有了新的兴趣。 在本文中, 利用几何和 convex 分析的结果, 我们进一步理解了曲线在优化中的作用 : - 我们首先展示了两种曲线概念的等同性, 即强共性和测量体, 证明Abernethy 等人 的猜想。 因此, 这显示 Wang 和 Abernethy 的 Frank- Wolfe 类型方法加快了 美元( afrinc{ 1\\\\\ t\ 2} ) 的合并率。 在( convex ) 目标函数上, 在不附加额外假设的情况下, 将 comvex 的 大大调和 。 我们发现两个主要属性有助于解释\emph{ wh/ whour 和测量体, 仅对强烈的 convex 错误。 这样可以直接恢复 Huang 和 Alx 的线的最近的结果, 每当FTFTL 直线 直系 直系 直系 直系 直系 直系 直系 直系 直系 直系, 直系 直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系,, 直系直系直系直系直系直系直系直系 。