Nowadays, many network representation learning algorithms and downstream network mining tasks have already paid attention to dynamic networks or temporal networks, which are more suitable for real-world complex scenarios by modeling evolving patterns and temporal dependencies between node interactions. Moreover, representing and mining temporal networks have a wide range of applications, such as fraud detection, social network analysis, and drug discovery. To contribute to the network representation learning and network mining research community, in this paper, we generate a new biological repository of dynamic protein-protein interaction network data (i.e., DPPIN), which consists of twelve dynamic network datasets describing protein-level interactions of yeast cells at different scales. We first introduce the generation process of DPPIN. To demonstrate the value of our published repository DPPIN, we then list the potential applications that would be benefited. Furthermore, we design dynamic local clustering, dynamic spectral clustering, dynamic subgraph matching, dynamic node classification, and dynamic graph classification experiments, where network datasets of DPPIN could indicate future research opportunities for some tasks by presenting challenges on state-of-the-art baseline algorithms. Finally, we identify future directions for improving the utility of this repository and welcome constructive inputs from the community. All resources of this work are deployed and publicly available at https://github.com/DongqiFu/DPPIN.


翻译:目前,许多网络代表性学习算法和下游网络采矿任务已经注意到动态网络或时间网络,这些网络或时间网络更适合于现实世界复杂情景,通过对节点相互作用之间不断变化的模式和时间依赖性进行建模。此外,代表和采矿时间网络具有广泛的应用,例如欺诈检测、社会网络分析和毒品发现。此外,为了对网络代表性学习和网络采矿研究界作出贡献,我们在本文件中产生了一个新的生物储存库,储存动态蛋白质-蛋白质互动网络数据(即DPPIN),其中包括12个动态网络数据集,描述不同规模的酵母细胞蛋白质-水平互动。我们首先引入DPPIN的生成过程。为了展示我们出版的DPPIN存储库的价值,我们然后列出可能受益的潜在应用。此外,我们设计了动态本地集群、动态光谱组合、动态子图匹配、动态节点分类和动态图表分类实验,DPPPIN的网络数据集可以显示某些任务的未来研究机会,通过对状态-艺术基线算法社区测算法提出挑战。我们首先介绍DPPIN的生成过程过程。我们确定了未来可用的建设性投入。在Mqiqu http/D部署的所有工具资源。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
专知会员服务
51+阅读 · 2021年6月30日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Capsule Networks,胶囊网络,57页ppt,布法罗大学
专知会员服务
68+阅读 · 2020年2月29日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
18+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
58+阅读 · 2021年11月15日
dynnode2vec: Scalable Dynamic Network Embedding
Arxiv
14+阅读 · 2018年12月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员