Transporting objects using aerial robots has been widely studied in the literature. Still, those approaches always assume that the connection between the quadrotor and the load is made in a previous stage. However, that previous stage usually requires human intervention, and autonomous procedures to locate and attach the object are not considered. Additionally, most of the approaches assume cables as rigid links, but manipulating cables requires considering the state when the cables are hanging. In this work, we design and control a catenary robot. Our robot is able to transport hook-shaped objects in the environment. The robotic system is composed of two quadrotors attached to the two ends of a cable. By defining the catenary curve with five degrees of freedom, position in 3-D, orientation in the z-axis, and span, we can drive the two quadrotors to track a given trajectory. We validate our approach with simulations and real robots. We present four different scenarios of experiments. Our numerical solution is computationally fast and can be executed in real-time.
翻译:文献中广泛研究了使用航空机器人运输物体的文献。 但是,这些方法总是假定, 二次钻探器和载荷之间的联系是在前一个阶段进行的。 但是, 上一个阶段通常需要人手干预, 而定位和附加该物体的自主程序并不考虑。 此外, 大多数方法假定电缆是硬链接, 但是操纵电缆需要考虑电缆挂起时的状况。 在这项工作中, 我们设计和控制一个催化机器人。 我们的机器人可以在环境中运输钩形物体。 机器人系统由两个附在电缆两端的二次钻探器组成。 通过给催化曲线下5度的自由度、 3D 位置、 z轴方向和 区域定义, 我们可以驱动两个二次钻探器跟踪给定的轨迹。 我们用模拟和真正的机器人来验证我们的方法。 我们提出四种不同的实验情景。 我们的数字解算法是快速的, 并且可以实时执行 。