Serverless computing has seen a myriad of work exploring its potential. Some systems tackle Function-as-a-Service (FaaS) properties on automatic elasticity and scale to run highly-parallel computing jobs. However, they focus on specific platforms and convey that their ideas can be extrapolated to any FaaS runtime. An important question arises: do all FaaS platforms fit parallel computations? In this paper, we argue that not all of them provide the necessary means to host highly-parallel applications. To validate our hypothesis, we create a comparative framework and categorize the architectures of four cloud FaaS offerings, emphasizing parallel performance. We attest and extend this description with an empirical experiment that consists in plotting in deep detail the evolution of a parallel computing job on each service. The analysis of our results evinces that FaaS is not inherently good for parallel computations and architectural differences across platforms are decisive to categorize their performance. A key insight is the importance of virtualization technologies and the scheduling approach of FaaS platforms. Parallelism improves with lighter virtualization and proactive scheduling due to finer resource allocation and faster elasticity. This causes some platforms like AWS and IBM to perform well for highly-parallel computations, while others such as Azure present difficulties to achieve the required parallelism degree. Consequently, the information in this paper becomes of special interest to help users choose the most adequate infrastructure for their parallel applications.


翻译:没有服务器的计算已经看到许多探索其潜力的工作。 一些系统在自动弹性和规模上处理“ 功能为服务” 属性, 以自动弹性和规模处理“ 功能为服务” 属性, 以运行高度平行的计算工作。 但是, 它们关注特定平台, 并传达它们的想法可以外推到任何 FaaS 运行时间。 一个重要问题是: 所有 FaaS 平台是否都适合平行计算? 在本文中, 我们争辩说, 它们并非都提供了容纳高度平行应用程序的必要手段。 为了验证我们的假设, 我们建立了一个比较框架, 并将四个云为FaS 提供的架构分类, 强调平行的性能。 我们证明并扩展了这一描述, 实验性实验性实验性实验包括深度规划每个服务的平行计算工作的演变过程。 对我们的研究结果的分析表明, FaaS 平台是否在平行的计算和结构差异中都适合平行的计算? 我们的论点是, 它们并非都决定了它们的业绩。 一个关键的洞察力是虚拟化技术的重要性和FaS 平台的时间安排方法。 平行性改进了某些较轻的虚拟化和主动性特别性安排, 因为有些特殊的虚拟化的虚拟化和时间表, 例如精细的资源分配和快速化的软件化的软件化的软件化, 从而可以产生这样的快速化和快速的系统, 快速化的计算, 和快速化的计算, 快速化的磁性化的模型化的操作性, 从而使得成为了这种系统成为高度的磁性, 和快速的逻辑化的操作性, 从而产生这样的系统。

0
下载
关闭预览

相关内容

PARCO:Parallel Computing。 Explanation:并行计算。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/conf/parco/
【上海交大】<操作系统> 2021课程,附课件
专知会员服务
41+阅读 · 2021年4月3日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】基于TVM工具链的深度学习编译器 NNVM compiler发布
机器学习研究会
5+阅读 · 2017年10月7日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
The StarCraft Multi-Agent Challenge
Arxiv
3+阅读 · 2019年2月11日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】基于TVM工具链的深度学习编译器 NNVM compiler发布
机器学习研究会
5+阅读 · 2017年10月7日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员