Time series forecasting is fundamental for various use cases in different domains such as energy systems and economics. Creating a forecasting model for a specific use case requires an iterative and complex design process. The typical design process includes the five sections (1) data pre-processing, (2) feature engineering, (3) hyperparameter optimization, (4) forecasting method selection, and (5) forecast ensembling, which are commonly organized in a pipeline structure. One promising approach to handle the ever-growing demand for time series forecasts is automating this design process. The present paper, thus, analyzes the existing literature on automated time series forecasting pipelines to investigate how to automate the design process of forecasting models. Thereby, we consider both Automated Machine Learning (AutoML) and automated statistical forecasting methods in a single forecasting pipeline. For this purpose, we firstly present and compare the proposed automation methods for each pipeline section. Secondly, we analyze the automation methods regarding their interaction, combination, and coverage of the five pipeline sections. For both, we discuss the literature, identify problems, give recommendations, and suggest future research. This review reveals that the majority of papers only cover two or three of the five pipeline sections. We conclude that future research has to holistically consider the automation of the forecasting pipeline to enable the large-scale application of time series forecasting.
翻译:对能源系统和经济学等不同领域的各种使用案例来说,时间序列的预测至关重要。为具体使用案例建立预测模型需要反复和复杂的设计过程。典型的设计过程包括五节:(1) 数据预处理,(2) 特征工程,(3) 超光谱优化,(4) 预测方法选择,和(5) 预测组合,这五节通常是在管道结构中安排的。处理对时间序列预测不断增长的需求的一个有希望的方法是使这一设计过程自动化。因此,本文件分析了关于自动时间序列预测管道的现有文献,以调查如何将预测模型的设计过程自动化。我们据此考虑自动机器学习(自动学习)和自动化统计预测方法,在单一的预测管道管道管道中进行。为此目的,我们首先介绍并比较每一个管道结构的拟议自动化方法。第二,我们分析关于它们相互作用、组合和覆盖5个管道部分的自动化方法。我们讨论文献,找出问题,提出建议,并建议今后的研究。本审查显示,大多数文件只涵盖5个管道系列的2至3个时间段。我们的结论是,未来研究必须从整体上进行预测。我们的结论是,未来的研究需要对管道的大规模自动化进行预测。