The evolution of MobileNets has laid a solid foundation for neural network applications on mobile end. With the latest MobileNetV3, neural architecture search again claimed its supremacy in network design. Unfortunately, till today all mobile methods mainly focus on CPU latencies instead of GPU, the latter, however, is much preferred in practice for it has faster speed, lower overhead and less interference. Bearing the target hardware in mind, we propose the first Mobile GPU-Aware (MoGA) neural architecture search in order to be precisely tailored for real-world applications. Further, the ultimate objective to devise a mobile network lies in achieving better performance by maximizing the utilization of bounded resources. Urging higher capability while restraining time consumption is not reconcilable. We alleviate the tension by weighted evolution techniques. Moreover, we encourage increasing the number of parameters for higher representational power. With 200x fewer GPU days than MnasNet, we obtain a series of models that outperform MobileNetV3 under the similar latency constraints, i.e., MoGA-A achieves 75.9% top-1 accuracy on ImageNet, MoGA-B meets 75.5% which costs only 0.5 ms more on mobile GPU. MoGA-C best attests GPU-awareness by reaching 75.3% and being slower on CPU but faster on GPU.The models and test code is made available here https://github.com/xiaomi-automl/MoGA.


翻译:移动网络的演进为移动终端的神经网络应用奠定了坚实的基础。 最新的移动网络V33 神经结构搜索再次声称其在网络设计中拥有优势。 不幸的是,直到今天为止,所有移动方法都主要侧重于控制晚期而不是GPU, 然而,后者在实践中却被普遍偏好,因为其速度更快、管理费用较低、干扰较少。 牢记目标硬件,我们提议第一次移动GPU-Aware(MoGAA)神经结构搜索,以便精确地为真实世界应用量身定制。 此外,设计移动网络的最终目标在于通过最大限度地利用受约束的资源实现更好的性能。 要求提高能力,同时限制时间消费不能调校正。 我们通过加权演化技术缓解紧张。 此外,我们鼓励增加代表能力更高的参数数量。 由于GPU-A软件比MnasNet少200倍的GPU日,我们获得一系列模型,在类似液压模型下,即MOGGA-A在图像网络上达到75.9%的顶级/高级精确度。 MoGA-B在GPO- 测试规则上达到0.5的0.5比GPUGGGPI(GPI/C) 达到GPI) 标准成本只有0.5比0.5。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
【Google】利用AUTOML实现加速感知神经网络设计
专知会员服务
29+阅读 · 2020年3月5日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
重磅!MobileNetV3 来了!
计算机视觉life
4+阅读 · 2019年5月11日
Github项目推荐 | AutoML与轻量模型列表
AI研习社
9+阅读 · 2019年5月4日
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
TResNet: High Performance GPU-Dedicated Architecture
Arxiv
8+阅读 · 2020年3月30日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
5+阅读 · 2019年4月8日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
【Google】利用AUTOML实现加速感知神经网络设计
专知会员服务
29+阅读 · 2020年3月5日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
重磅!MobileNetV3 来了!
计算机视觉life
4+阅读 · 2019年5月11日
Github项目推荐 | AutoML与轻量模型列表
AI研习社
9+阅读 · 2019年5月4日
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员