Automated surveillance is essential for the protection of Critical Infrastructures (CIs) in future Smart Cities. The dynamic environments and bandwidth requirements demand systems that adapt themselves to react when events of interest occur. We present a reconfigurable Cyber Physical System for the protection of CIs using distributed cloud-edge smart video surveillance. Our local edge nodes perform people detection via Deep Learning. Processing is embedded in high performance SoCs (System-on-Chip) achieving real-time performance ($\approx$ 100 fps - frames per second) which enables efficiently managing video streams of more cameras source at lower frame rate. Cloud server gathers results from nodes to carry out biometric facial identification, tracking, and perimeter monitoring. A Quality and Resource Management module monitors data bandwidth and triggers reconfiguration adapting the transmitted video resolution. This also enables a flexible use of the network by multiple cameras while maintaining the accuracy of biometric identification. A real-world example shows a reduction of $\approx$ 75\% bandwidth use with respect to the no-reconfiguration scenario.
翻译:保护未来智能城市的关键基础设施(CIs)的自动化监控至关重要。动态环境和带宽要求自适应系统,以适应感兴趣的事件发生时的反应。我们展示了利用分布式云端智能视频监控保护CIs的可重新配置的网络物理系统。我们的本地边缘节点通过深学习对人们进行检测。处理嵌入高性能SoCs(System-on-Chip)的实时性能($approx$100fps-每秒框架),从而能够以较低的框架速率有效管理更多照相机源的视频流。云端服务器收集节点的结果,以进行生物鉴别、跟踪和周边监测。质量和资源管理模块监测数据带宽,并触发调整传输视频分辨率的重新配置。这也使得多摄像头能够灵活使用网络,同时保持生物鉴别的准确性。一个真实世界实例显示,在不重新配置情景下,可以减少$\approx 75 ⁇ 带宽的使用。