Image-based navigation is widely considered the next frontier of minimally invasive surgery. It is believed that image-based navigation will increase the access to reproducible, safe, and high-precision surgery as it may then be performed at acceptable costs and effort. This is because image-based techniques avoid the need of specialized equipment and seamlessly integrate with contemporary workflows. Further, it is expected that image-based navigation will play a major role in enabling mixed reality environments and autonomous, robotic workflows. A critical component of image guidance is 2D/3D registration, a technique to estimate the spatial relationships between 3D structures, e.g., volumetric imagery or tool models, and 2D images thereof, such as fluoroscopy or endoscopy. While image-based 2D/3D registration is a mature technique, its transition from the bench to the bedside has been restrained by well-known challenges, including brittleness of the optimization objective, hyperparameter selection, and initialization, difficulties around inconsistencies or multiple objects, and limited single-view performance. One reason these challenges persist today is that analytical solutions are likely inadequate considering the complexity, variability, and high-dimensionality of generic 2D/3D registration problems. The recent advent of machine learning-based approaches to imaging problems that, rather than specifying the desired functional mapping, approximate it using highly expressive parametric models holds promise for solving some of the notorious challenges in 2D/3D registration. In this manuscript, we review the impact of machine learning on 2D/3D registration to systematically summarize the recent advances made by introduction of this novel technology. Grounded in these insights, we then offer our perspective on the most pressing needs, significant open problems, and possible next steps.
翻译:基于图像的导航被广泛视为最低侵入性外科手术的下一个前沿。相信基于图像的导航将增加以可接受的成本和努力进行复制、安全和高精度外科手术的机会,因为基于图像的导航将增加以可接受的成本和努力进行可复制、安全和高精度外科手术的机会。这是因为基于图像的技术避免了专门设备的需求,并与当代工作流程无缝地融合。此外,预计基于图像的导航将在促成混合现实环境和自主的机器人工作流程方面发挥重要作用。图像指导的一个关键组成部分是2D/3D登记,这是一种对3D结构之间的空间关系进行系统化评估的技术,例如,数量图象或工具模型,以及2D的直径直径直径外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科