Millions of battery-powered sensors deployed for monitoring purposes in a multitude of scenarios, e.g., agriculture, smart cities, industry, etc., require energy-efficient solutions to prolong their lifetime. When these sensors observe a phenomenon distributed in space and evolving in time, it is expected that collected observations will be correlated in time and space. In this paper, we propose a Deep Reinforcement Learning (DRL) based scheduling mechanism capable of taking advantage of correlated information. We design our solution using the Deep Deterministic Policy Gradient (DDPG) algorithm. The proposed mechanism is capable of determining the frequency with which sensors should transmit their updates, to ensure accurate collection of observations, while simultaneously considering the energy available. To evaluate our scheduling mechanism, we use multiple datasets containing environmental observations obtained in multiple real deployments. The real observations enable us to model the environment with which the mechanism interacts as realistically as possible. We show that our solution can significantly extend the sensors' lifetime. We compare our mechanism to an idealized, all-knowing scheduler to demonstrate that its performance is near-optimal. Additionally, we highlight the unique feature of our design, energy-awareness, by displaying the impact of sensors' energy levels on the frequency of updates.


翻译:在多种情况下,例如农业、智能城市、工业等,为监测目的而部署的数百万个电池动力传感器需要节能的解决方案来延长其寿命。当这些传感器观测空间分布的现象并随着时间的演变而变化时,预计收集的观测在时间和空间上是相互关联的。在本文件中,我们提议一个基于深强化学习(DRL)的时间安排机制,能够利用相关信息。我们使用深确定性政策渐进算法设计我们的解决方案。拟议的机制能够确定传感器传送其更新的频率,以确保准确收集观测结果,同时考虑现有能源。为了评估我们的时间安排机制,我们使用包含在多种实际部署中获得的环境观测的多套数据集。实际观测使我们能够模拟机制与现实互动的环境。我们表明,我们的解决方案可以大大延长传感器的寿命。我们将我们的机制与一个理想化的、完全知情的调度器进行比较,以表明其性能接近最佳。此外,我们通过显示传感器的频率影响,突出我们设计、能源意识的特性。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
Arxiv
7+阅读 · 2018年12月26日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
Top
微信扫码咨询专知VIP会员