In chronic pain rehabilitation, physiotherapists adapt physical activity to patients' performance based on their expression of protective behavior, gradually exposing them to feared but harmless and essential everyday activities. As rehabilitation moves outside the clinic, technology should automatically detect such behavior as to provide similar personalized support. Previous works have shown the feasibility of automatic Protective Behavior Detection (PBD) within a specific predefined activity at the time. In this paper, we investigate the use of deep learning to detect protective behavior across activity types, using wearable motion capture and surface electromyography data collected from healthy participants and people with chronic pain. We approach the problem by continuously detecting protective behavior within an activity rather than estimating its overall presence. The best performance for our activity-independent system reaches mean F1 score of 0.82 with Leave-One-Subject-Out validation. Performances remain competitive when protective behavior is modelled separately per activity type (mean F1 score: bend-down=0.77, one-leg-stand=0.81, sit-to-stand=0.72, stand-to-sit=0.83, reach-forward=0.67). Such performance reaches excellent level of agreement with the average experts' rating, suggesting clear potential for personalized chronic-pain management at home. We analyze various parameters characterizing our approach to better understand how the results could generalize to other PBD datasets and different groundtruth granularity.
翻译:在慢性疼痛康复中,物理治疗师根据健康参与者和慢性疼痛者表现出来的保护行为,根据他们的保护行为,使身体活动适应病人的性能,逐渐使他们暴露于恐惧但无害和基本的日常活动。当康复在诊所外移动时,技术应自动检测此类行为,以提供类似的个性化支持。以前的工作已经表明,在当时的特定预先界定的活动中,自动保护性行为检测(PBD)是可行的。在本文中,我们利用从健康参与者和慢性疼痛者那里收集的可磨损运动捕捉和表面电感学数据,调查利用深层学习发现不同活动类型的保护行为,发现不同活动类型保护行为的情况。我们通过在一项活动中不断发现保护行为,而不是估计其总体存在,来解决这一问题。我们活动独立系统的最佳性表现达到0.82分的F1分,与请假单项-一分结果验证。当保护性行为按活动类型分别模拟时(平均F1分:弯下=0.77=0.81,坐对立点=0.72,坐到站点=0.72,站点=0.83,站立到站点=0.83,站点=0.67),我们解决问题的方法是通过在一项活动中不断发现保护行为,而不是估计其总体存在,而不是估计其存在,我们活动的总体存在,我们的活动系统系统运行系统系统系统的最佳表现将达到0.67=0.6767。这种状态,我们会达到0.67。我们活动的最佳性,这种状态,我们会最佳分析方法,这种工作,这种工作,这种工作,我们活动的最佳分析方法,我们如何在更深的分析分析方法,我们内部分析到更精确性能到更深层次分析。我们个人特性,我们如何理解到更深的分析分析到更深层次分析方法,我们如何在一般的分析。我们如何理解到更深入地,我们个人分析到更深层次的分析。我们如何到更深入地分析。我们如何,我们如何,我们内部分析。我们如何,我们如何到更深层次分析,我们如何分析方法,我们如何到更深入分析。