Fast and safe navigation of dynamical systems through a priori unknown cluttered environments is vital to many applications of autonomous systems. However, trajectory planning for autonomous systems is computationally intensive, often requiring simplified dynamics that sacrifice safety and dynamic feasibility in order to plan efficiently. Conversely, safe trajectories can be computed using more sophisticated dynamic models, but this is typically too slow to be used for real-time planning. We propose a new algorithm FaSTrack: Fast and Safe Tracking for High Dimensional systems. A path or trajectory planner using simplified dynamics to plan quickly can be incorporated into the FaSTrack framework, which provides a safety controller for the vehicle along with a guaranteed tracking error bound. This bound captures all possible deviations due to high dimensional dynamics and external disturbances. Note that FaSTrack is modular and can be used with most current path or trajectory planners. We demonstrate this framework using a 10D nonlinear quadrotor model tracking a 3D path obtained from an RRT planner.
翻译:动态系统通过先天未知的杂乱环境快速安全导航对于自主系统的许多应用至关重要。 但是,自主系统的轨迹规划是计算密集的,往往需要简化的动态,牺牲安全和动态可行性才能有效规划。 相反,安全轨迹可以使用更先进的动态模型计算,但通常太慢,无法用于实时规划。我们提议一个新的算法FaSTrack:快速安全跟踪高尺寸系统。一个使用简化的动态来快速规划的路径或轨迹规划器可以纳入FaSTrac框架,该框架为车辆提供了安全控制器,同时设定了有保障的跟踪错误。这一约束捕捉了由于高维动态和外部扰动造成的所有可能的偏差。注意FaSTracrack是模块,可以与大多数当前路径或轨迹规划者一起使用。我们用一个10D的非线性二次仪模型来演示这个框架,跟踪从RRT平板仪中获得的3D路径。