In this work, we present the Domain of Dependence (DoD) stabilization for systems of hyperbolic conservation laws in one space dimension. The base scheme uses a method of lines approach consisting of a discontinuous Galerkin scheme in space and an explicit strong stability preserving Runge-Kutta scheme in time. When applied on a cut cell mesh with a time step length that is appropriate for the size of the larger background cells, one encounters stability issues. The DoD stabilization consists of penalty terms that are designed to address these problems by redistributing mass between the inflow and outflow neighbors of small cut cells in a physical way. For piecewise constant polynomials in space and explicit Euler in time, the stabilized scheme is monotone for scalar problems. For higher polynomial degrees $p$, our numerical experiments show convergence orders of $p+1$ for smooth flow and robust behavior in the presence of shocks.
翻译:在这项工作中,我们展示了一个空间层面的双曲保护法系统依赖性稳定域(DoD) 。 基础方案使用一种直线方法, 包括空间中不连续的加列金计划, 以及一个明确强大的稳定性, 及时保存龙格- 库塔计划。 当应用在一个适合较大背景单元格大小的时间段长度的剪切细胞网块上时, 人们会遇到稳定性问题。 DoD 稳定包含一些惩罚条款, 目的是通过将小切割细胞的流出和流出相邻之间的质量以物理方式重新分配来解决这些问题。 对于空间中的小块常态多球和直径的极速, 稳定的方案是用于卡路里问题的单体。 对于更高的多球度, 我们的数字实验显示, 在出现冲击时, 顺流和稳健的动作会达到 $P+1 。