The Bayesian paradigm is often chosen for decision making in clinical development due to its probabilistic statements around parameters. These probability statements are visually depicted through prior and posterior distributions, "distribution estimates" of an unknown quantity of interest, and are powerful tools for visualizing and pooling prior information and expert opinion with current data. Under the frequentist paradigm the analogous distribution estimate is a confidence distribution, a sample-dependent ex-post object supported on the parameter space that depicts all possible p-values and confidence intervals one could construct given the observed data. Confidence distributions are a powerful visual tool and allow for the inclusion of historical data and expert opinion via meta-analysis. We demonstrate the use of hypothesis testing via confidence distributions when defining end-of-study success and displaying study results, as well as in performing inference on power for progression through all phases of pharmaceutical development. Desired inference on phase 3 power is used to reverse engineer the hypothesis, significance level, and sample size required in phase 2. Extrapolation between endpoints is also demonstrated, and a discussion is provided on multiple comparisons.
翻译:在临床发展方面,往往选择贝叶西亚模式,因为其概率性陈述围绕参数进行临床发展的决策。这些概率说明通过先前和事后的分布,即兴趣数量未知的“分布估计”,以视觉方式描绘出,是将先前的信息和专家意见与当前数据进行视觉化和汇集的有力工具。在经常模式下,类似的分布估计是一个信任分布,一个在参数空间上支持的样本依赖的事后物体,根据观察到的数据,可以绘制所有可能的p价值和信任间隔。信任分布是一个强大的视觉工具,通过元分析将历史数据和专家意见纳入其中。在确定研究结束时的成功和显示研究结果时,我们展示了通过信任分布进行的假设测试,以及在判断药物发展各阶段的进展能力时,我们展示了这种假设的使用情况。人们希望第3阶段的推论被用来改变第2阶段所要求的假设、重要程度和抽样大小。端点之间的推断也得到了证明,并就多重比较进行了讨论。