Covariate balance is crucial in obtaining unbiased estimates of treatment effects in observational studies. Methods based on inverse probability weights have been widely used to estimate treatment effects with observational data. Machine learning techniques have been proposed to estimate propensity scores. These techniques however target accuracy instead of covariate balance. Methods that target covariate balance have been successfully proposed and largely applied to estimate treatment effects on continuous outcomes. However, in many medical and epidemiological applications, the interest lies in estimating treatment effects on time-to-event outcomes. With this type of data, one of the most common estimands of interest is the marginal hazard ratio of the Cox proportional hazard model. In this paper, we start by presenting robust orthogonality weights (ROW), a set of weights obtained by solving a quadratic constrained optimization problem that maximizes precision while constraining covariate balance defined as the sample correlation between confounders and treatment. By doing so, ROW optimally deal with both binary and continuous treatments. We then evaluate the performance of the proposed weights in estimating marginal hazard ratios of binary and continuous treatments with time-to-event outcomes in a simulation study. We finally apply ROW on the evaluation of the effect of hormone therapy on time to coronary heart disease and on the effect of red meat consumption on time to colon cancer among 24,069 postmenopausal women enrolled in the Women's Health Initiative observational study.


翻译:在观察研究中,基于反概率权重的方法被广泛用来估计观察数据的治疗效果。 机器学习技术被提出来估计偏差分数。这些技术尽管是目标准确性,但却是目标偏差平衡而不是共差平衡。 目标偏差平衡的方法已经成功地提出,并在很大程度上用于估计治疗对持续结果的影响。 然而,在许多医疗和流行病学应用中,关注的焦点在于估计治疗对时间到活动结果的影响。有了这类数据,最常见的利息估计值之一是Cox比例危险模型的边际危害比率。在本文件中,我们首先提出强或高度偏差加权数(ROW),这是解决四面限制最优化问题获得的一套权重,在限制粘结者与治疗之间的抽样关系的同时,也基本用于估计治疗对时间和连续治疗的影响。我们随后评估了Cox比例在估计二进制和连续治疗的边际危害比率方面的表现。 在24岁后妇女心脏内消费结果研究中,我们用时间到时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年5月21日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
已删除
将门创投
5+阅读 · 2019年9月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
5+阅读 · 2021年4月21日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
已删除
将门创投
5+阅读 · 2019年9月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员