The optimal assignment of Large Language Models (LLMs) to specialized roles in multi-agent systems is a significant challenge, defined by a vast combinatorial search space, expensive black-box evaluations, and an inherent trade-off between performance and cost. Current optimization methods focus on single-agent settings and lack a principled framework for this multi-agent, multi-objective problem. This thesis introduces MALBO (Multi-Agent LLM Bayesian Optimization), a systematic framework designed to automate the efficient composition of LLM-based agent teams. We formalize the assignment challenge as a multi-objective optimization problem, aiming to identify the Pareto front of configurations between task accuracy and inference cost. The methodology employs multi-objective Bayesian Optimization (MOBO) with independent Gaussian Process surrogate models. By searching over a continuous feature-space representation of the LLMs, this approach performs a sample-efficient exploration guided by the expected hypervolume improvement. The primary contribution is a principled and automated methodology that yields a Pareto front of optimal team configurations. Our results demonstrate that the Bayesian optimization phase, compared to an initial random search, maintained a comparable average performance while reducing the average configuration cost by over 45%. Furthermore, MALBO identified specialized, heterogeneous teams that achieve cost reductions of up to 65.8% compared to homogeneous baselines, all while maintaining maximum performance. The framework thus provides a data-driven tool for deploying cost-effective and highly specialized multi-agent AI systems.
翻译:在多智能体系统中,将大语言模型(LLMs)优化分配至专业化角色是一项重大挑战,其特点在于巨大的组合搜索空间、昂贵的黑盒评估以及性能与成本之间的固有权衡。现有优化方法主要针对单智能体场景,缺乏针对这一多智能体、多目标问题的原则性框架。本论文提出MALBO(多智能体大语言模型贝叶斯优化),一个旨在自动化高效构建基于LLM的智能体团队的系统性框架。我们将分配挑战形式化为多目标优化问题,旨在识别任务准确性与推理成本之间的帕累托前沿配置。该方法采用多目标贝叶斯优化(MOBO)结合独立高斯过程代理模型。通过在LLMs的连续特征空间表示上进行搜索,该方法以期望超体积改进为指导,实现样本高效的探索。主要贡献在于提出了一种原则性、自动化的方法,能够生成最优团队配置的帕累托前沿。实验结果表明,与初始随机搜索相比,贝叶斯优化阶段在保持相近平均性能的同时,将平均配置成本降低了超过45%。此外,MALBO识别出的专业化异质团队相较于同质基线,在维持最高性能的前提下,实现了高达65.8%的成本降低。因此,该框架为部署经济高效且高度专业化的多智能体人工智能系统提供了一种数据驱动的工具。