As a platform, Twitter has been a significant public space for discussion related to the COVID-19 pandemic. Public social media platforms such as Twitter represent important sites of engagement regarding the pandemic and these data can be used by research teams for social, health, and other research. Understanding public opinion about COVID-19 and how information diffuses in social media is important for governments and research institutions. Twitter is a ubiquitous public platform and, as such, has tremendous utility for understanding public perceptions, behavior, and attitudes related to COVID-19. In this research, we present CML-COVID, a COVID-19 Twitter data set of 19,298,967 million tweets from 5,977,653 unique individuals and summarize some of the attributes of these data. These tweets were collected between March 2020 and July 2020 using the query terms coronavirus, covid and mask related to COVID-19. We use topic modeling, sentiment analysis, and descriptive statistics to describe the tweets related to COVID-19 we collected and the geographical location of tweets, where available. We provide information on how to access our tweet dataset (archived using twarc).


翻译:作为平台,Twitter是讨论与COVID-19大流行有关的公共空间,Twitter等公共社交媒体平台代表了有关该流行病的重要接触网站,这些数据可供研究小组用于社会、卫生和其他研究。了解关于COVID-19的公众舆论,以及社交媒体信息传播对政府和研究机构的重要性。Twitter是一个无处不在的公共平台,因此对了解与COVID-19有关的公众认识、行为和态度有很大的用处。在这项研究中,我们介绍了CML-COVID-19的一组数据,即来自5 977 653个独特个人的19 298 967万个Twitter数据集,并总结了这些数据的一些属性。这些推特是在2020年3月至2020年7月使用与COVID-19有关的 Corona病毒、covid和面具等查询术语收集的。我们使用主题模型、情绪分析和描述我们收集的与COVID-19有关的推文的推文和可获取的地理位置。我们提供了关于如何获取我们推特数据的信息(使用twarcs)。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
已删除
将门创投
7+阅读 · 2018年4月18日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
50+阅读 · 2018年2月21日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年3月19日
Arxiv
5+阅读 · 2018年1月23日
Arxiv
5+阅读 · 2015年9月14日
VIP会员
相关VIP内容
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
已删除
将门创投
7+阅读 · 2018年4月18日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
50+阅读 · 2018年2月21日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员