Despite the recent progress in speech emotion recognition (SER), state-of-the-art systems lack generalisation across different conditions. A key underlying reason for poor generalisation is the scarcity of emotion datasets, which is a significant roadblock to designing robust machine learning (ML) models. Recent works in SER focus on utilising multitask learning (MTL) methods to improve generalisation by learning shared representations. However, most of these studies propose MTL solutions with the requirement of meta labels for auxiliary tasks, which limits the training of SER systems. This paper proposes an MTL framework (MTL-AUG) that learns generalised representations from augmented data. We utilise augmentation-type classification and unsupervised reconstruction as auxiliary tasks, which allow training SER systems on augmented data without requiring any meta labels for auxiliary tasks. The semi-supervised nature of MTL-AUG allows for the exploitation of the abundant unlabelled data to further boost the performance of SER. We comprehensively evaluate the proposed framework in the following settings: (1) within corpus, (2) cross-corpus and cross-language, (3) noisy speech, (4) and adversarial attacks. Our evaluations using the widely used IEMOCAP, MSP-IMPROV, and EMODB datasets show improved results compared to existing state-of-the-art methods.


翻译:尽管最近在语音情感识别(SER)方面取得了进展,但最先进的系统缺乏对不同条件的概括化,造成总体化不足的一个关键根本原因是情绪数据集稀缺,这是设计稳健机器学习模式的重大障碍。SER最近的工作重点是利用多任务学习(MTL)方法,通过学习共享的演示来改进总体化。然而,大多数这些研究都提出MTL解决方案,要求为辅助任务提供元标签,从而限制SER系统的培训。本文提议了一个MTL框架(MTL-AUG),从扩大的数据中学习一般化的表述。我们使用增强型分类和不受监督的重建作为辅助任务,这样可以对SER系统进行关于强化数据的培训,而无需为辅助任务设置任何元标签。MTL-AUG的半监督性质使得能够利用丰富的无标签数据来进一步提升SER的绩效。我们全面评估了以下环境中的拟议框架:(1) 实体内部,(2) 跨公司和跨语言,(3) 激烈的言论,(3) 不受监督的重建作为辅助任务,使SER-M-M-M-M-M-M-S-S-S-S-S-S-SMAR-S-S-SDMAR-S-S-S-S-S-S-S-SU-SU-SAR-SU-SU-SAR-SAR-S-S-SAR-S-S-S-S-S-S-SAR-SAR-SAR-S-S-S-SAR-SAR-SAR-SAR-SAR-SDADADADADADADADADADA/CS-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SDADADADADADADA-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-C-DA-C-C-C-C-C-C-S-

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月5日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员