This paper introduces a new type of causal structure, namely multiscale non-stationary directed acyclic graph (MN-DAG), that generalizes DAGs to the time-frequency domain. Our contribution is twofold. First, by leveraging results from spectral and causality theories, we expose a novel probabilistic generative model, which allows to sample an MN-DAG according to user-specified priors concerning the time-dependence and multiscale properties of the causal graph. Second, we devise a Bayesian method for the estimation of MN-DAGs, by means of stochastic variational inference (SVI), called Multiscale Non-Stationary Causal Structure Learner (MN-CASTLE). In addition to direct observations, MN-CASTLE exploits information from the decomposition of the total power spectrum of time series over different time resolutions. In our experiments, we first use the proposed model to generate synthetic data according to a latent MN-DAG, showing that the data generated reproduces well-known features of time series in different domains. Then we compare our learning method MN-CASTLE against baseline models on synthetic data generated with different multiscale and non-stationary settings, confirming the good performance of MN-CASTLE. Finally, we show some insights derived from the application of MN-CASTLE to study the causal structure of 7 global equity markets during the Covid-19 pandemic.
翻译:本文介绍了一种新的因果结构类型,即多尺度的非静止定向环球图(MN-DAG),该图将DAG概括到时频域。我们的贡献是双重的。首先,通过利用光谱和因果关系理论的结果,我们暴露了一种新的概率化基因模型,根据用户指定的时间依赖和因果图的多尺度性质,根据用户指定的时间依赖和因果图的多尺度性能,对MN-DAG进行取样。第二,我们设计了一种巴伊西亚方法,用于估算MN-DAG,采用随机变异感(SVI),称为多尺度非标准化的Causal结构学习者(MNS-CATLE)。除了直接观察外,MNC-CTLE还利用了不同时间分辨率序列总能量序列变异的信息。我们在实验中,首先使用拟议的模型,根据潜伏的MNM-DAGAG, 显示在不同领域的时间序列中生成的数据复制了已知的已知特征特征。随后,我们将我们学习的GMS-C-C-CLEA-C-CLEAF模型模拟模拟模型与我们所生成的不甚高尺度化的模拟模拟模拟模拟模拟模拟模拟的模拟模拟模拟模拟模拟模拟的模拟模拟模拟模拟模拟模拟模拟模拟模拟模拟模拟模拟模拟的模拟的模拟的模拟模拟模拟模拟模拟模拟模拟模拟的模拟。